11,548 research outputs found

    Initial and Post-Initial Acquisition in the Serial Search Based Noncoherent Multiple Transmit/Receive Antenna Aided DS-CDMA Downlink

    No full text
    In this paper we investigate the issues of both initial and post-initial acquisition schemes in the multiple transmit/receive antenna aided DS-CDMA downlink, when communicating over uncorrelated Rayleigh channels. The associated Mean Acquisition Time (MAT) performance trends are characterised as a function of the number of transmit/receive antennas. Furthermore, we characterise both the initial and post-initial acquisition performance as a function of the relevant system parameters. It is demonstrated that in contrast to our expectations, the achievable MAT degrades at low Ec/Io values, except for the case of P = 2 transmit antennas operating in conjunction with R=1 receive antenna over the specific Signal-to-Interference plus Noise Ratio (SINR) per chip (Ec/Io) range considered, as the number of transmit antennas is increased. Ironically, our findings suggest that increasing the number of transmit antennas in a MIMO-aided CDMA system results in combining the low-energy, noise-contaminated signals of the transmit antennas, which ultimately increases the MAT by an order of magnitude, when the SINR is relatively low. This phenomenon has a detrimental effect on the performance of Rake receiver based synchronisation schemes, when the perfectly synchronised system is capable of attaining its target bit error rate performance at reduced SINR values, as a benefit of employing multiple transmit antennas. Therefore our future research will be focused on specifically designing acquisition schemes for MIMO systems

    Differential Coherent Code Acquisition in the Multiple Transmit/Receive Antenna Aided DS-CDMA Downlink

    No full text
    In this contribution we investigate both differentially coherent and noncoherent code acquisition schemes in the multiple transmit/receive antenna aided DS-CDMA downlink, when communicating over uncorrelated Rayleigh channels. It is demonstrated that in contrast to our expectations, the achievable Mean Acquisition Time (MAT) degrades at low Ec/Io values, as the number of transmit antennas is increased in both differentially coherent and noncoherent code acquisition system scenarios, even though the degree of performance degradation depends upon the specific scheme considered. Ironically, our findings suggest that increasing the number of transmit antennas in a MIMO-aided CDMA system results in combining the low-energy, noise-contaminated signals of the transmit antennas, which ultimately increases the MAT by an order of magnitude, when the SINR is relatively low. Therefore our future research will be aimed at specifically designing acquisition schemes for MIMO systems

    Analysis of Serial Search Based Code Acquisition in Multiple Transmit Antenna Aided DS-CDMA Downlink

    No full text
    In this contribution we investigate the serial search based initial code acquisition performance of DSCDMA employing multiple transmit antennas both with and without Post-Detection Integration (PDI), when communicating over uncorrelated Rayleigh channels. We characterise the associated performance trends as a function of the number of transmit antennas. It is demonstrated that in contrast to our expectation, the achievable correct detection probability PD degrades at low c o E /I values, as the number of transmit antennas is increased. It is extremely undesirable to degrade the achievable acquisition performance, when the system is capable of attaining its target bit error rate performance at reduced SINR values, as a benefit of employing multiple transmit antennas. Our future research will focus on the study of designing iterative turbo-like acquisition schemes designed for MIMO systems

    Nonlinear response and scaling law in the vortex state of d-wave superconductors

    Full text link
    We study the field dependence of the quasi-particle density of states, the thermodynamics and the transport properties in the vortex state of d-wave superconductors when a magnetic field is applied perpendicular to the conducting plane, specially for the low field and the low temperature compared to the upper critical field and transition temperature, respectively, H/Hc21H/H_{c2} \ll 1 and T/Tc1T/T_c \ll 1. Both the superfluid density and the spin susceptibility exhibit the characteristic H\sqrt{H}-field dependence, while the nuclear spin lattice relaxation rate T11_1^{-1} and the thermal conductivity are linear in field HH. With increasing temperature, these quantities exhibit the scaling behavior in T/HT/\sqrt{H}. The present theory applies to 2D ff-wave superconductor as well; a possible candidate of the superconductivity in Sr2_2RuO4_4.Comment: 11 pages, 4 figure

    BCS theory of nodal superconductors

    Full text link
    This course has a dual purpose. First we review the successes of the weak-coupling BCS theory in describing new classes of superconductors discovered since 1979. They include the heavy-fermion superconductors, high-Tc cuprate superconductors, organic superconductors, Sr2RuO4, etc. Second, we present the quasiclassical approximation introduced by Volovik, which we extend to describe the thermodynamics and the thermal conductivity of the vortex state in nodal superconductors. This approach provides the most powerful tool to identify the symmetry of the energy gap function Delta(k) in these new superconductors.Comment: 31 pages, 33 figure

    Au-SN Flip-Chip Solder Bump for Microelectronic and Optoelectronic Applications

    Get PDF
    As an alternative to the time-consuming solder pre-forms and pastes currently used, a co-electroplating method of eutectic Au-Sn alloy was used in this study. Using a co-electroplating process, it was possible to plate the Au-Sn solder directly onto a wafer at or near the eutectic composition from a single solution. Two distinct phases, Au5Sn and AuSn, were deposited at a composition of 30at.%Sn. The Au-Sn flip-chip joints were formed at 300 and 400 degrees without using any flux. In the case where the samples were reflowed at 300 degrees, only an (Au,Ni)3Sn2 IMC layer formed at the interface between the Au-Sn solder and Ni UBM. On the other hand, two IMC layers, (Au,Ni)3Sn2 and (Au,Ni)3Sn, were found at the interfaces of the samples reflowed at 400 degrees. As the reflow time increased, the thickness of the (Au,Ni)3Sn2 and (Au,Ni)3Sn IMC layers formed at the interface increased and the eutectic lamellae in the bulk solder coarsened.Comment: Submitted on behalf of TIMA Editions (http://irevues.inist.fr/tima-editions
    corecore